
System V Shared Memory Support for HP C Run-Time Library for

OpenVMS Systems

This document provides reference information about the HP C Run-Time Library (RTL) functions. Also, it
supports the following Open Group System V Shared Memory routines:

shmget()

shmctl()

shmat()

shmdt()

System V Shared Memory Limitations

Following are the currently supported limits in System V Shared Memory:

 Maximum number (SHMMNI) of System V Shared Memory segments allowed in a system is

1024.

 Maximum size (SHMMAX) of System V Shared Memory segment allowed is 512 MB.

 Minimum size (SHMMIN) of System V Shared Memory segment allowed is 1 byte. (Note: The

global section mapped for System V Shared Memory segment is a multiple of 8 KB. For example,

System V Shared Memory segment of size 1 byte will have an 8 KB global section.)

Prerequisites

1. You must have a C RTL ECO kit installed on OpenVMS system running Version 8.4 and UPDATE

600 kit for Alpha or Integrity servers.

2. System V Shared Memory interfaces uses file-backed global sections. These APIs either create or

delete the files based on request. Current implementation creates the files in

SYS$SPECIFIC:[DECC$SYSV_SHM] directory. System Manager or Administrator must create the

directory using the following command before using the Shared Memory APIs:

$ CREATE /DIRECTORY SYS$SPECIFIC:[DECC$SYSV_SHM] -

/OWNER_UIC = [SYSTEM] -

/PROTECTION = (S:RWE, O:RWE, G:RWE, W:RWE)

Note: if the SYS$SPECIFIC:[DECC$SYSV_SHM] directory does not exist, the current

implementation uses the SYS$SPECIFIC:[PSX$SEMAPHORES] directory. This directory is created

during OpenVMS Version 8.4 installation or upgrade procedure.

Restrictions

1. If an application pass its valid non-zero virtual address to shmat() API function, the current

implementation expects this address to be a 32 bit virtual address; a 64 bit virtual address is not

supported.

2. System V Shared Memory APIs are implemented using the file-backed global sections; hence

each shared memory segment created would internally create a file to back the data for the

section in system device (SYS$SYSDEVICE), and shared memory control operation with

IPC_RMID deletes the file. So, the system administrator must provide sufficient disk space on

SYS$SYSDEVICE based on the usage of shared memory segments.

3. Performance of these APIs depends on the size of segments; for example creating a file of size

100 MB takes approximately 10 to 15 seconds, so the application using these APIs may

experience delay when they are used for the first time. If the same segments are used

frequently without IPC_RMID, then this delay will not be seen because with no IPC_RMID in use,

the file will not be deleted, and thus will be a persistent file until such time that it is deleted.

4. Current release guarantees the initialization of shared memory segments with zero values only

when the following conditions are true:

a. When High-Water Marking is enabled on the SYS$SYSDEVICE device.

AND

b. If application is using $ERAPAT (erase pattern) system service, the erase pattern generated

for disk storage type must be zero.

In all other conditions, the initial contents of each shared memory segment created may or may

not be initialized with zero values.

______________________________________ Note ___

For the following error cases, you must increase the GBLSECTIONS SYSGEN parameter:

1. If shmget() API function returns ENOMEM (value = 12) or ENOSPC (value = 28) .

2. If shmat() API function returns ENOMEM (value = 12),

ENOMEM indicates 'Not enough core' and ENOSPC indicates ’no space left on device’.

Shared memory internally uses global sections and hence a system having a large number of shared

memory segments may result in exhaustion of GBLSECTIONS.

Shared Memory API Description:

shmget (Integrity servers, Alpha)

Gets a shared memory segment.

Format
#include <shm.h>

int shmget(key_t key, size_t size, int shmflg);

Argument

key

The key for which the associated shared memory identifier is returned.

size

Shared memory segment size in bytes.

shmflg

Flag used to initialize the low order 9 bits of the shm_perm.mode member of the

shmid_ds data structure associated with the new shared memory segment.

For more information, see the Description.

Description

The shmget() API function returns the shared memory identifier associated with the key.

A shared memory identifier with its associated shmid_ds data structure is created for a key if

one of the following is TRUE:

• The key argument is equal to IPC_PRIVATE.

• The key argument does not already have a shared memory identifier associated with it and

(shmflg and IPC_CREAT) is non-zero.

If shmflg specifies both IPC_CREAT and IPC_EXCL and a shared memory segment already

exists for a key, shmget() API function fails with errno set to EEXIST.

When it is created, the shmid_ds data structure associated with the new shared memory

identifier is initialized as follows:

• The values of shm_perm.cuid, shm_perm.uid, shm_perm.cgid, and shm_perm.gid are set

equal to the effective user ID and effective group ID, respectively, of the calling process.

• The low order 9 bits of shm_perm.mode are set equal to the low order 9 bits of the shmflg

argument.

• The variable shm_segsz is set equal to the value of the size argument.

• The variables shm_lpid, shm_nattch, shm_atime, and shm_dtime are set equal to zero, the

variable shm_cpid is set equal to the Process ID of the segment creator, and the variable

shm_ctime is set equal to the current time.

Return Values

n Successful completion. The function returns a non-negative integer

shared memory identifier.

-1 Indicates an error. The function sets errno to one of the following values:

• EACCES – A shared memory identifier exists for key, but operation permission

as specified by the low order 9 bits of shmflg are not granted.

• EEXIST – A shared memory identifier exists for a key but ((shmflg &

IPC_CREAT) && (shmflg & IPC_EXCL)) is non-zero.

• EINVAL – The value of size is either less than SHMMIN, greater than the

SHMMAX, or a shared memory identifier exists for a key, but the size is greater

than the size of that segment. With current implementation SHMMIN is defined

to 1 byte and SHMMAX is defined to 512 MB.

• ENOENT – A shared memory identifier does not exist for a key and (shmflg &

IPC_CREAT) is equal to zero.

• ENOSPC – A shared memory identifier is to be created but the system-

imposed limit on the maximum number of allowed shared memory segments

system-wide are exceeded.

• EVMSERR – OpenVMS specific non-translatable error code.

shmctl (Integrity servers, Alpha)

Shared memory control operations.

Format

#include <shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

Argument

shmid

A shared memory identifier, a positive integer. It is created by the shmget() API function and

used to identify the shared memory segment on which to perform the control operation.

cmd

The control operation (IPC_STAT, IPC_SET, or IPC_RMID) to perform on the shared memory

segment. For more information, see the Description.

buf

Pointer to a shmid_ds structure, defined in <shm.h> as follows:

struct shmid_ds {

struct ipc_perm shm_perm; /* permissions structure defined in <ipc.h> */

size_t shm_segsz; /* size of memory segment in bytes */

pid_t shm_lpid; /* Process ID of last memory operation */

pid_t shm_cpid; /* Process ID of segment creator */

shmatt_t shm_nattch; /* Number of current attaches */

time_t shm_atime; /* time of last shmat */

time_t shm_dtime; /* time of last shmdt */

time_t shm_ctime; /* time of last change */

};

Description

The shmctl() API function provides a variety of shared memory control operations as specified

by the cmd argument. cmd can have the following values:

IPC_STAT

Place the current value of each member of the data structure associated with shmid into the

structure pointed to by buf. The contents of this structure are defined in <shm.h>.

IPC_SET

Set the value of the following members of the data structure associated with shmid to the

corresponding value found in the structure pointed to by buf:

shm_perm.uid

shm_perm.gid

shm_perm.mode /* only low 9 bits */

This cmd can be executed by a process that has an effective user ID equal to either that of a

user having appropriate privileges or to the value of either shm_perm.uid or shm_perm.cuid in

the data structure associated with shmid.

IPC_RMID

Remove the shared memory identifier specified by shmid from the system and delete the

shared memory segment and data structure associated with it. If the segment is attached to one

or more processes, the segment key is changed to IPC_PRIVATE and the segment is marked as

removed. The segment disappears when the last attached process detaches it. This cmd can

be executed by a process that has an effective user ID equal to either that of a user with

appropriate privileges or to the value of either shm_perm.uid or shm_perm.cuid in the data

structure associated with shmid.

Return Values

0 Successful completion.

-1 Indicates an error. The function sets errno to one of the following values:

• EACCES – The argument cmd is equal to IPC_STAT and the calling process does

not have read permission.

• EINVAL – The value of shmid is not a valid shared memory identifier, or the

value of cmd is not a valid command.

• EFAULT - The argument cmd has value IPC_SET or IPC_STAT but the address

pointed to by buf is not accessible.

• EPERM - The argument cmd is equal to IPC_RMID or IPC_SET and the effective

user ID of the calling process is not equal to that of a process with appropriate

privileges and it is not equal to the value of shm_perm.cuid or shm_perm.uid

in the data structure associated with shmid.

• EVMSERR – OpenVMS specific non-translatable error code.

shmat (Integrity servers, Alpha)

shared memory attach operation.

Format

#include <shm.h>

void *shmat(int shmid, const void *shmaddr, int shmflg);

Argument

shmid

A shared memory identifier, a positive integer. It is created by the shmget() API function and

used to identify the shared memory segment on which to perform the shared memory attach

operation.

shmaddr

Address within the calling process to which the shared memory segment has to be attached.

For more information, see the Description.

shmflg

Flag to indicate type of attach operation. For more information, see the Description.

Description

The shmat function attaches the shared memory segment associated with the shared memory

identifier specified by shmid to the address space of the calling process.

The segment is attached at the address specified by one of the following criteria:

• If shmaddr is a null pointer, the segment is attached at the first available address

as selected by the system. This is the preferred method of using shmat.

• If shmaddr is not a null pointer and (shmflg & SHM_RND) is non-zero, the segment is attached

at the address given by (shmaddr -((__int64)shmaddr % SHMLBA)).

The character '%' is the C language remainder operator.

• If shmaddr is not a null pointer and (shmflg & SHM_RND) is zero, the segment is attached at

the address given by shmaddr.

• The segment is attached for reading if (shmflg & SHM_RDONLY) is non-zero and the calling

process has read permission; otherwise, if it is zero and the calling process has both read and

write permission, the segment is attached for reading and writing.

A successful shmat() API function updates the members of the shmid_ds structure associated

with the shared memory segment as follows:

• shm_atime is set to the current time.

• shm_lpid is set to the process ID of the calling process.

• shm_nattch is incremented by one.

It is possible to attach a shared memory segment even if it is already marked for deletion,

if it has a valid shmid.

If shmaddr is not a null pointer and SHM_RND flag is specified in shmflg, the attaching address is

calculated as (shmaddr -((__int64)shmaddr % SHMLBA)).

Note:

1. For the current implementation the SHMLBA value is 8 KB.

2. If the application passes its own valid non-zero address, the current implementation

requires this address to be 32 bit; a 64 bit virtual address is not supported.

Return Values

x Successful completion. The function returns the start address of the attached

shared memory segment.

-1 Indicates an error. The function sets errno to one of the following values:

• EACCES - Operation permission is denied to the calling process.

• EINVAL - The value of shmid is not a valid shared memory identifier; or the

shmaddr is not a null pointer, and the value of (shmaddr – ((__int64)shmaddr

% SHMLBA)) is an illegal address for attaching shared memory; or the

shmaddr is not a null pointer, (shmflg & SHM_RND) is zero, and the value of

shmaddr is an illegal address for attaching shared memory.

• EMFILE - The number of shared memory segments attached to the calling

process exceeds the system imposed limit.

• ENOMEM - The available data space is not large enough to accommodate the

shared memory segment.

• EVMSERR – OpenVMS specific non-translatable error code.

shmdt (Integrity servers, Alpha)

shared memory detach operation.

Format

#include <shm.h>

int shmdt(const void *shmaddr);

Argument

shmaddr

The address returned by a previous call to shmat.

Description

The shmdt() API function detaches the shared memory segment located at the address specified

by shmaddr from the address space of the calling process. The to-be-detached segment must be

currently attached with shmaddr equal to the value returned by the attaching shmat() API

function.

On a successful shmdt() API function the system updates the members of the shmid_ds

structure associated with the shared memory segment as follows:

• shm_dtime is set to the current time.

• shm_lpid is set to the process-ID of the calling process.

• shm_nattch is decremented by one. If it becomes zero and the segment is marked for

deletion, the segment is deleted. For more information see the shmctl function

Upon exit, all the attached shared memory segments are detached from the process.

Return Values

0 Successful completion.

-1 Indicates an error. The function sets errno to one of the following values:

• EINVAL - The value of shmaddr is not the data segment start address of a

shared memory segment.

• EVMSERR – OpenVMS specific non-translatable error code.

Example

/*

Abstract: This test program creates a Shared Memory Segment and write

some data and reads the same data after attaching again.

And also it ensures that an EINVAL error is generated when

we try to attach a memory that has already been deleted.

*/

#include <errno.h>

#include <types.h>

#include <ipc.h>

#include <shm.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define SHMSZ 128

#define SHMKEY 9229

main()

{

int shmid;

char *shm_write;

char *shm_read;

printf("Creating Shared Memory Segment\n");

if ((shmid = shmget(SHMKEY, SHMSZ, IPC_CREAT | 0666)) < 0)

{

perror("shmget");

printf("\nshmget(): FAILED\n");

}

if ((shm_write = shmat(shmid, NULL, 0)) == (char *) -1)

{

perror("shmat");

printf("\nshmat(): FAILED\n");

return;

}

printf("Writing Data to the Created Shared Memory Segment\n\n");

memcpy(shm_write, "Test Shared Memory Segment", SHMSZ);

printf("Detaching Shared Memory Segment\n");

if(shmdt(shm_write)<0)

perror("shmdt");

printf("Attach again to read the data from Shared Memory Segment\n\n");

if ((shm_read = shmat(shmid, NULL, 0)) == (char *) -1)

{

perror("shmat");

printf("\nshmat(): FAILED\n");

}

printf("Reding Data from Shared Memory Segment\n");

printf("Data in Segment is: %s\n\n",shm_read);

printf("Detaching Shared Memory Segment\n");

if(shmdt(shm_read)<0)

perror("shmdt");

printf("Deleting Shared Memory Segment using IPC_RMID\n\n");

if(shmctl(shmid, IPC_RMID, NULL)<0)

perror("shmctl");

printf("Attaching to the deleted Shared Memory Segment - error EINVAL should be generated\n\n");

if ((shm_write = shmat(shmid, NULL, 0)) == (char *) -1)

{

perror("shmat");

}

}

This example produces the following output:

Creating Shared Memory Segment

Writing Data to the Created Shared Memory Segment

Detaching Shared Memory Segment

Attach again to read the data from Shared Memory Segment

Reding Data from Shared Memory Segment

Data in Segment is: Test Shared Memory Segment

Detaching Shared Memory Segment

Deleting Shared Memory Segment using IPC_RMID

Attaching to the deleted Shared Memory Segment - error EINVAL should be generated

shmat: invalid argument

